Statistical and Bayesian approaches to RNA secondary structure prediction.

نویسنده

  • Ye Ding
چکیده

Prediction of RNA secondary structure is a fundamental problem in computational structural biology. For several decades, free energy minimization has been the most popular method for prediction from a single sequence. In recent years, the McCaskill algorithm for computation of partition function and base-pair probabilities has become increasingly appreciated. This paradigm-shifting work has inspired the developments of extended partition function algorithms, statistical sampling and clustering, and application of Bayesian statistical inference. The performance of thermodynamics-based methods is limited by thermodynamic rules and parameters. However, further improvements may come from statistical estimates derived from structural databases for thermodynamics parameters with weak or little experimental data. The Bayesian inference approach appears to be promising in this context.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches

DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...

متن کامل

Prediction Based on Type-II Censored Coherent System Lifetime Data under a Proportional Reversed Hazard Rate Model

In this paper, we discuss the prediction problem based on censored coherent system lifetime data when the system structure is known and the component lifetime follows the proportional reversed hazard model. Different point and interval predictors based on classical and Bayesian approaches are derived. A numerical example is presented to illustrate the prediction methods used in this paper. Mont...

متن کامل

Computational approaches for RNA energy parameter estimation.

Methods for efficient and accurate prediction of RNA structure are increasingly valuable, given the current rapid advances in understanding the diverse functions of RNA molecules in the cell. To enhance the accuracy of secondary structure predictions, we developed and refined optimization techniques for the estimation of energy parameters. We build on two previous approaches to RNA free-energy ...

متن کامل

PreRkTAG: Prediction of RNA Knotted Structures Using Tree Adjoining Grammars

Background: RNA molecules play many important regulatory, catalytic and structural <span style="font-variant: normal; font-style: norma...

متن کامل

A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more.

The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RNA

دوره 12 3  شماره 

صفحات  -

تاریخ انتشار 2006